# Project name: Trex Panel Rail – Aluminum and Mesh Railing System (Residential)

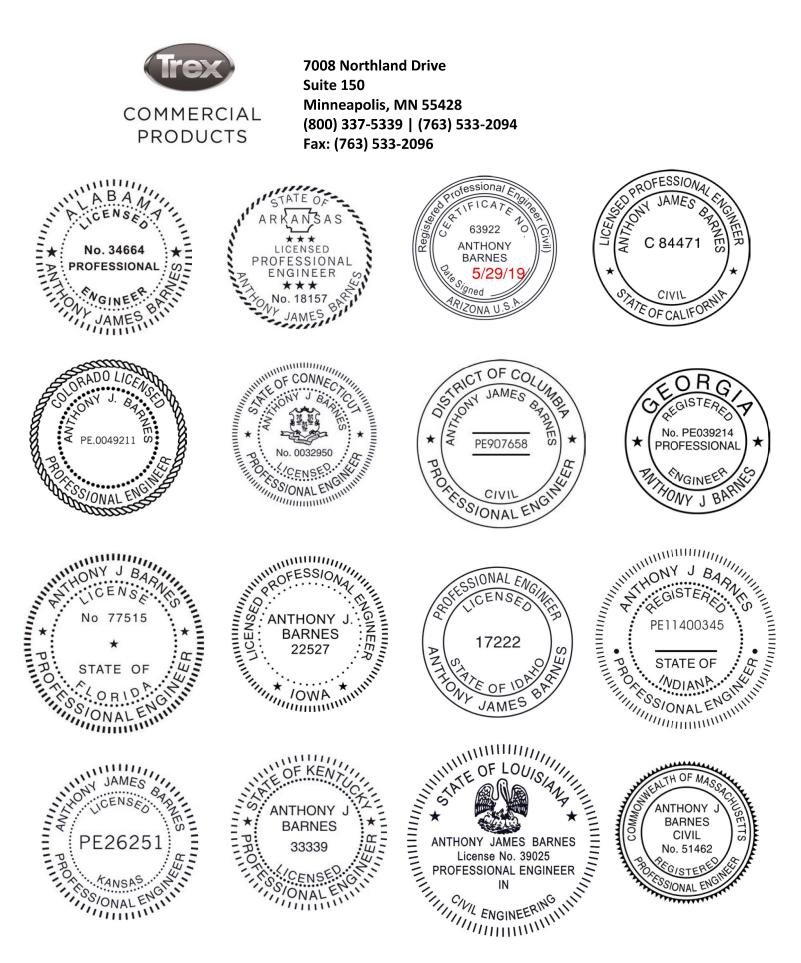
Creation date: 4/10/19

Last revision: 5/29/19

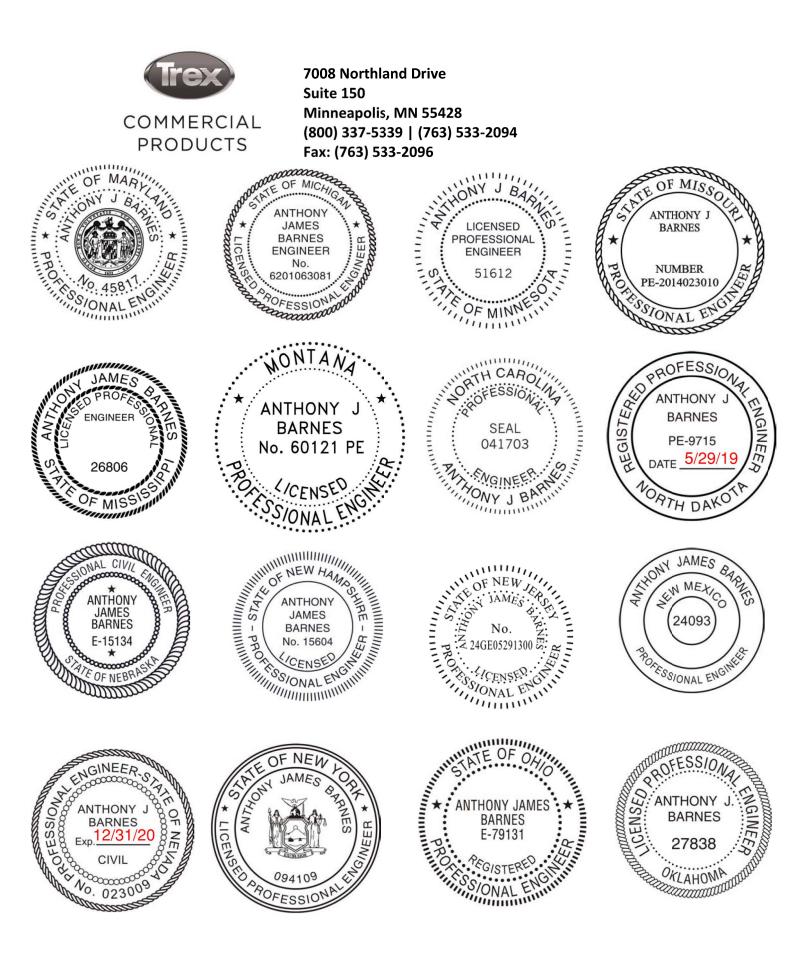
Revision: 2

I hereby certify that the following pages of this report were prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the states shown on the following pages.

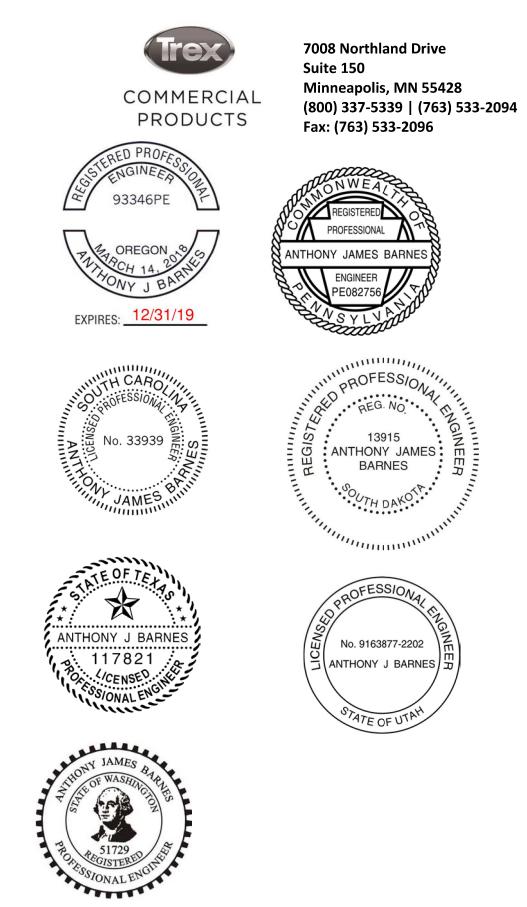
Anthony J Barnes, PE 5/29/19

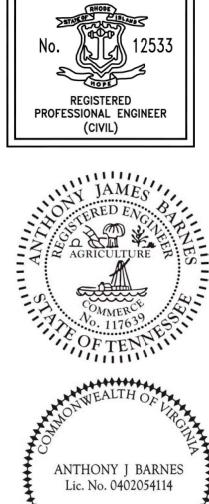



COMMERCIAL

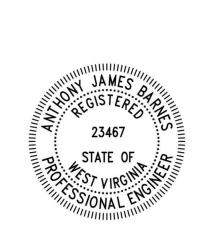

PRODUCTS

7008 Northland Drive Suite 150 Minneapolis, MN 55428 (800) 337-5339 | (763) 533-2094 Fax: (763) 533-2096


| State 👻        | Expiration              | License #    |
|----------------|-------------------------|--------------|
| Alabama        | 12/31/2019              | 34664        |
| Arizona        | 6/30/2020               | 63922        |
| Arkansas       | 12/31/2019              | 18157        |
| California     | 9/30/2019               | 84471        |
| Colorado       | 10/31/2019              | PE.0049211   |
| Connecticut    | 1/31/2020               | PEN.0032950  |
| Florida        | 2/28/2021               | 77515        |
| Georgia        | 12/31/2020              | PE039214     |
| Idaho          | 9/30/2020               | P-17222      |
| Indiana        | 7/31/2020               | PE11400345   |
| Iowa           | 12/31/2019              | 22527        |
| Kansas         | 4/30/2020               | PE26251      |
| Kentucky       | <mark>6/30/201</mark> 9 | 33339        |
| Louisiana      | 9/30/2020               | 39025        |
| Maryland       | 8/7/2020                | 45817        |
| Massachusetts  | 6/30/2020               | 51462        |
| Michigan       | 10/31/2020              | 6201063081   |
| Minnesota      | 6/30/2020               | 51612        |
| Mississippi    | 12/31/2019              | 26806        |
| Missouri       | 12/31/2020              | PE2014023010 |
| Montana        | 6/30/2020               | 60121        |
| Nebraska       | 12/31/2019              | E-15134      |
| Nevada         | 12/31/2020              | 023009       |
| New Hampshire  | 9/30/2019               | 15604        |
| New Jersey     | 4/30/2020               | 24GE05291300 |
| New Mexico     | 12/31/2019              | 24093        |
| New York       | 8/31/2019               | 094109       |
| North Carolina | 12/31/2019              | 041703       |
| North Dakota   | 12/31/2020              | PE-9715      |
| Ohio           | 12/31/2019              | 79131        |
| Oklahoma       | 8/31/2019               | 27838        |
| Oregon         | 12/31/2019              | 93346PE      |
| Pennsylvania   | 9/30/2019               | PE082756     |
| Rhode Island   | 6/30/2019               | 12533        |
| South Carolina | 6/30/2020               | 33939        |
| South Dakota   | 7/31/2020               | 13915        |
| Tennessee      | 8/31/2020               | 00117639     |
| Texas          | 6/30/2019               | PE 117821    |
| Utah           | 3/31/2021               | 9163877-2202 |
| Virginia       | 10/31/2020              | 402054114    |
| Washington     | 9/15/2019               | 51729        |
| Washington, DC | 8/31/2020               | PE907658     |
| West Virginia  | 12/31/2020              | 23467        |
| Wisconsin      | 7/31/2020               | 43059-6      |
| Wyoming        | 12/31/2019              | 16000        |




Project number: 38215 Author: CDT




Project number: 38215 Author: CDT





ANTHONY JAMES BARNES









# **Contents**

| 1 |    | Des  | cript     | tion                                                                      | 9 |
|---|----|------|-----------|---------------------------------------------------------------------------|---|
| 2 |    | Des  | ign (     | Criteria                                                                  | 9 |
|   | 2. | .1   | Buil      | ding codes/standards/project specifications                               | 9 |
|   | 2. | 2    | Des       | ign loads                                                                 | 9 |
|   |    | 2.2. | 1         | Live load                                                                 | 9 |
|   |    | 2.2. | 2         | Wind load                                                                 | 9 |
|   | 2. | .3   | Def       | lections1                                                                 | 0 |
|   | 2. | .4   | <u>⁄1</u> | Material used1                                                            | 1 |
|   |    | 2.4. | 1         | Aluminum buckling constants1                                              | 1 |
| 3 |    | Mes  | sh in     | fill1                                                                     | 2 |
| 4 |    | Rail | ing o     | check1                                                                    | 4 |
|   |    |      |           | $\setminus$                                                               |   |
|   | 4. | .1   | / 1       | Post, weld, and base plate test results1                                  | 4 |
|   |    | 4.1. | 4         | $\frac{1}{1}$ Allowable load for 2.1/2" x 2.1/2" Moldad COC2 TC (Trow) 1  | ٨ |
|   | 4. |      | •         | Allowable load for 2-1/2" x 2-1/2" Welded 6063-T6 (Trex)1<br>horage check |   |
|   | 4. | .2   | And       |                                                                           | 0 |
|   |    | 4.2. | 1         | 2 Lag screw check1                                                        | 6 |
|   |    | 4.2. | •         | Through-bolts with backer                                                 |   |
|   |    |      |           | rail and bottom rail check1                                               |   |
|   |    | 4.3. |           | Top rail1                                                                 |   |
|   |    | 4.3. |           | Bottom rail                                                               |   |
|   |    | 4.0. | 2         |                                                                           | т |
|   |    | 4.3. | 3         | 1 L-bracket2                                                              | 7 |
|   |    | 4.3. | 4         | Test results2                                                             | 8 |
| 5 |    | Cor  | clus      | sion3                                                                     | 0 |
| 6 |    | Арр  | end       | ix A – aluminum tensile test results3                                     | 1 |
|   | 6. |      |           | cription3                                                                 |   |
|   | 6. | 2    | Res       | sults3                                                                    | 3 |



| 6.3 | Derived properties                    | .37 |
|-----|---------------------------------------|-----|
| 6.4 | Conclusions and applicability of data | .38 |



| Revision | Description                                                    |
|----------|----------------------------------------------------------------|
| 1        | 1) Revised material alloy of post in section 2.4 to those used |
|          | in testing. Updated base plate temper and alloy to those       |
|          | used in testing.                                               |
|          | <ol><li>Revised weld detail in section 4.1.1</li></ol>         |
|          | 3) Added L-bracket section                                     |
| 2        | 1) Removed lag screw check                                     |

# 1 Description

This calculation covers the Trex aluminum railing system with mesh infill. The railing is constructed of aluminum posts, top rail, and a bottom rail that secures the mesh in place. Railing height is 36"-42" with maximum inside to inside post spacing of 96".

## 2 Design Criteria

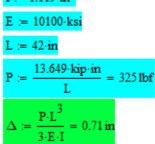
#### 2.1 Building codes/standards/project specifications

- 1) IRC 2015
- 2) Aluminum Design Manual 2015
- 3) AAMA TIR A9
- 4) AISC 360-10
- 5) NDS 2018
- 6) ACI 318-14

#### 2.2 Design loads

#### 2.2.1 Live load

| Design Criteria           | Requirement                                                                                                                         |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Guard/handrail live loads | 200 lbf applied at any point at the top of the rail per IRC 301.5, <b>OR</b> 50 lbf over 1 sf area per IRC table R301.5 sub note f. |


#### 2.2.2 Wind load

The system is considered open and wind loads do not control over live loads.



#### 2.3 Deflections

| Deflection                 | Aluminum, steel, stainless steel: L/60<br>per minimum requirements of IBC table<br>R301.7 sub note c where L = 2*Length<br>for cantilevers |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| I := 1.119 in <sup>4</sup> |                                                                                                                                            |



42 in / 30 = 1.4 in (allowable deflection) > 0.71 in deflection on post

The allowable moment on the post is 13.649 k-in. See section 4.1.2 for more information.



# 2.4 1 Material used

| Component        | Material                | Yield          | Ultimate        |
|------------------|-------------------------|----------------|-----------------|
| Top rail         | Aluminum 6063-T6        | 25 ksi         | 30 ksi          |
| Bottom extrusion | Aluminum 6063-T6        | 25 ksi         | 30 ksi          |
| Posts            | Aluminum 6061-T6        | 25 ksi (8 ksi) | 30 ksi (17 ksi) |
| Baseplates       | Aluminum 6063-T6        | 25 ksi         | 30 ksi          |
| Screws           | Stainless steel         | 30 ksi         | 70 ksi          |
| Mesh             | Stainless steel (steel) | 30 ksi         | 70 ksi          |

\*Welded properties in parentheses

\*\* Equivalent alloy and temper may be used for aluminum extrusions

#### 2.4.1 Aluminum buckling constants

Buckling constants for T5-T9 tempers

#### Non welded:



#### Aluminum Design (ADM 2015)

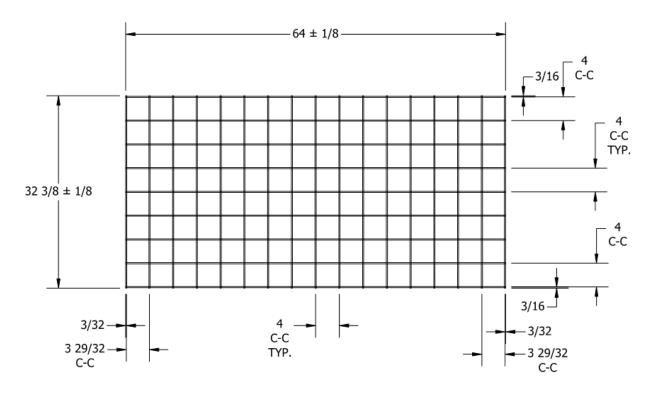
| Alloy = 6061                     | Material Properties (Table A.3.3) |                          |                           |  |  |  |  |
|----------------------------------|-----------------------------------|--------------------------|---------------------------|--|--|--|--|
| Temper = "T6"                    | E = 10100 ksi<br>G := 3800 ksi    | F <sub>tu</sub> = 38·ksi | $F_{sy} = 21 \cdot ksi$   |  |  |  |  |
| Description = "Native ADM"       | G .= 5800-KSI                     | $F_{ty} = 35 \cdot ksi$  | $F_{su} = 22.8 \cdot ksi$ |  |  |  |  |
|                                  |                                   | F <sub>cy</sub> = 35·ksi |                           |  |  |  |  |
| Buckling Constants (Table B / 1/ | R / 2)                            | -                        |                           |  |  |  |  |

#### Buckling Constants (Table B.4.1/B.4.2)

| $B_c = 39.4 \cdot ksi$  | $B_p = 45 \text{ ksi}$ | B <sub>br</sub> = 66.8·ksi | $B_s = 27.2 \cdot ksi$  | $B_t = 43.2 \cdot ksi$     | B <sub>tb</sub> = 64.8∙ksi |
|-------------------------|------------------------|----------------------------|-------------------------|----------------------------|----------------------------|
| $D_c = 0.246 \cdot ksi$ | $D_p = 0.3 \cdot ksi$  | $D_{br} = 0.666 \cdot ksi$ | $D_s = 0.141 \cdot ksi$ | D <sub>t</sub> = 1.558·ksi | $D_{tb} = 4.5 \cdot ksi$   |
| $C_{c} = 65.7$          | $C_{p} = 61.4$         | $C_{br} = 66.9$            | $C_{s} = 78.9$          |                            | $C_{tb} = 55.44$           |

Postbuckling Constants (Table B.4.3)  $k_{1_f} = 0.5$   $k_{2_f} = 2.04$   $k_{1_c} = 0.35$   $k_{2_c} = 2.27$  Tension Coefficient (Table A.3.3) k<sub>t</sub> = 1

#### Welded:


| Aluminum Design (ADM 2015)                                                   |                           |                                      |                                   |                         |                            |  |  |  |  |  |
|------------------------------------------------------------------------------|---------------------------|--------------------------------------|-----------------------------------|-------------------------|----------------------------|--|--|--|--|--|
| Alloy = 6061                                                                 |                           | Material P                           | Material Properties (Table A.3.3) |                         |                            |  |  |  |  |  |
| Temper = "T6"                                                                |                           | $E = 10100 \cdot 1$<br>G := 3800 · k |                                   |                         | $F_{sy} = 13 \cdot ksi$    |  |  |  |  |  |
| Description = "                                                              | Welded*"                  |                                      | F <sub>ty</sub> =                 | 21.6·ksi F              | su = 17.46·ksi             |  |  |  |  |  |
| -                                                                            |                           |                                      | F <sub>cy</sub> =                 | = 21.6·ksi              |                            |  |  |  |  |  |
| Buckling Cons                                                                | stants (Table B.4         | .1/B.4.2)                            |                                   |                         |                            |  |  |  |  |  |
| $B_c = 23.7 \cdot ksi$                                                       | B <sub>p</sub> = 26.9·ksi | B <sub>br</sub> = 39.3∙ksi           | $B_s = 16.2 \cdot ksi$            | $B_t = 26.2 \cdot ksi$  | B <sub>tb</sub> = 39.3∙ksi |  |  |  |  |  |
| $D_c = 0.115 \cdot ksi$                                                      | $D_p = 0.138 \cdot ksi$   | D <sub>br</sub> = 0.3·ksi            | $D_s = 0.065 \cdot ksi$           | $D_t = 0.799 \cdot ksi$ | D <sub>tb</sub> = 2.3·ksi  |  |  |  |  |  |
| C <sub>c</sub> = 84.6                                                        | $C_{p} = 79.5$            | $C_{br} = 87.3$                      | $C_{s} = 102.2$                   |                         | $C_{tb} = 77.386$          |  |  |  |  |  |
| -                                                                            | Constants (Table          | •                                    |                                   | oefficient (Tabl        | e A.3.3)                   |  |  |  |  |  |
| $k_{1_f} = 0.5$ $k_{2_f} = 2.04$ $k_{1_c} = 0.35$ $k_{2_c} = 2.27$ $k_t = 1$ |                           |                                      |                                   |                         |                            |  |  |  |  |  |

Note, these buckling constants will be used in calculating the capacity of the post and the extrusions holding the glass.

# 3 Mesh infill

Typical panel make-up:

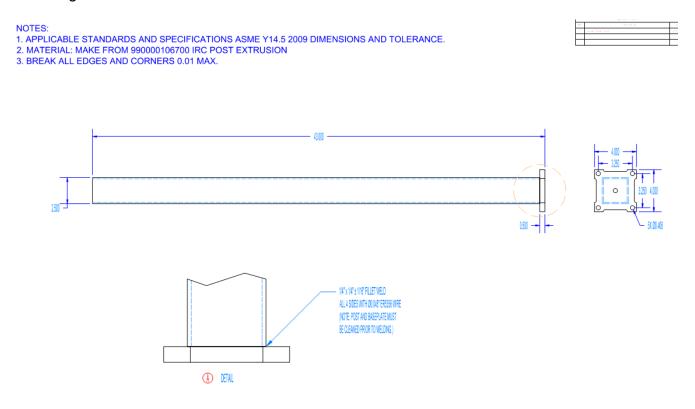




#### NOTES:

- GALVANIZED OR 316 STAINLESS STEEL WELDED WIRE MESH
- WIRE SIZE =  $\emptyset 0.188$ " ( $\emptyset 0.187$ " NOM. FOR GALVANIZED AND  $\emptyset 0.192$ " NOM. FOR 316 STAINLESS)
- C-C SPACING = 4.000" TYP.

50 lbs infill load is required to be applied over 1 square foot of the mesh. The mesh is 3/16" wire that is either stainless steel or steel.


Mesh and attachments of the mesh are adequate by inspection due to the small loading.



# 4 Railing check

4.1 1 Post, weld, and base plate test results

**4.1.1** Allowable load for 2-1/2" x 2-1/2" Welded 6063-T6 (Trex) This covers the post used by Trex in their Signature (IRC) residential railing. This post has a 4"x4" baseplate welded to it. The post/baseplate assembly is tested as a single unit.



All material for post is 6063-T6 with ER5356 wire for welding

Data was taken from the Trex assembly line's daily tests, which consists of ultimate loads on samples taken from the production line.

#### Applied live load = 0.2 k \* 43 in = 8.6 k-in



| Sample<br>Number                                                                                                                                                                                                                                                                                   | Ultimate<br>Load (lbf) | Average<br>Ioad | Standard deviation | Min. | kN, 5% | cov    | Strength<br>(lbs) | FOS  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|--------------------|------|--------|--------|-------------------|------|
| Number Load (lbf) load deviation Min. kN, 5% COV (lbs) FOS   Based on 4/23/18 tests in Winchester, VA 1 625 2 621 3 610 4 636 5 647 6 632 7 633 8 624 9 651 14.4 610 1.92 0.0226 607.6 3.04   10 659 11 633 14.4 610 1.92 0.0226 607.6 3.04   13 623 14 652 15 653 14.4 610 1.92 0.0226 607.6 3.04 |                        |                 |                    |      |        |        |                   |      |
| 1                                                                                                                                                                                                                                                                                                  | 625                    |                 |                    |      |        |        |                   |      |
| 2                                                                                                                                                                                                                                                                                                  | 621                    |                 |                    |      |        |        |                   |      |
| 3                                                                                                                                                                                                                                                                                                  | 610                    |                 |                    |      |        |        |                   |      |
| 4                                                                                                                                                                                                                                                                                                  | 636                    |                 |                    |      |        | 0.0226 |                   | 3.04 |
| 5                                                                                                                                                                                                                                                                                                  | 647                    |                 |                    |      | 1.92   |        | 607.6             |      |
| 6                                                                                                                                                                                                                                                                                                  | 632                    |                 |                    |      |        |        |                   |      |
| 7                                                                                                                                                                                                                                                                                                  | 633                    |                 | 5 14.4             | 610  |        |        |                   |      |
| 8                                                                                                                                                                                                                                                                                                  | 624                    | 625 1075        |                    |      |        |        |                   |      |
| 9                                                                                                                                                                                                                                                                                                  | 651                    | 635.1875        |                    |      |        |        |                   |      |
| 10                                                                                                                                                                                                                                                                                                 | 659                    |                 |                    |      |        |        |                   |      |
| 11                                                                                                                                                                                                                                                                                                 | 633                    |                 |                    |      |        |        |                   |      |
| 12                                                                                                                                                                                                                                                                                                 | 644                    |                 |                    |      |        |        |                   |      |
| 13                                                                                                                                                                                                                                                                                                 | 623                    |                 |                    |      |        |        |                   |      |
| 14                                                                                                                                                                                                                                                                                                 | 652                    |                 |                    |      |        |        |                   |      |
| 15                                                                                                                                                                                                                                                                                                 | 653                    |                 |                    |      |        |        |                   |      |
| 16                                                                                                                                                                                                                                                                                                 | 620                    |                 |                    |      |        |        |                   |      |

\*Derived per methods of EN 1990-2002, Appendix D, Table D1

607.6 lb / 2.5 FS = 243 lb maximum applied load > 200 lb code specified OK 243 lb / 50 lb/ft = 4.86' = 58" maximum post spacing > 48" maximum used OK Deflection:

Limit = 2\*L/60 = 2\*42.5"/60 = 1.42"

$$\Delta = \frac{PL^3}{3EI} = \frac{(0.2 \ k)(42.5")^3}{3(10100 \ ksi)(1.12 \ in^4)} = 0.45" < 1.42" \text{ limit } \underline{OK}$$

| Table 23             |     |       |        |      |                                  |        |                |      |                |     | - | 1   |    | +   | ה_ר      |
|----------------------|-----|-------|--------|------|----------------------------------|--------|----------------|------|----------------|-----|---|-----|----|-----|----------|
| SQUARE TUBES         |     |       |        |      |                                  |        |                |      |                |     |   |     |    |     | <u> </u> |
| Designation          | d   | t     | Weight | А    | $I_{\mathbf{x}}, I_{\mathbf{y}}$ | Sx, Sy | $r_{x}, r_{y}$ | J    | $Z_{x}, Z_{y}$ | b/t |   | d X |    |     |          |
|                      | in. | in.   | 1b/ft  | in²  | in                               | in     | in.            | in•  | in             | -   |   |     |    |     |          |
| RT 2.5 x 2.5 x 0.125 | 2.5 | 0.125 | 1.4    | 1.19 | 1.12                             | 0.896  | 0.971          | 1.67 | 1.06           | 18  |   |     |    |     |          |
|                      |     |       |        |      |                                  |        |                |      |                |     |   | •   |    |     | 븨        |
|                      |     |       |        |      |                                  |        |                |      |                |     |   |     |    | Y   |          |
| T-61-04              |     |       |        |      |                                  |        |                |      |                |     |   |     | r• | - 0 | •        |



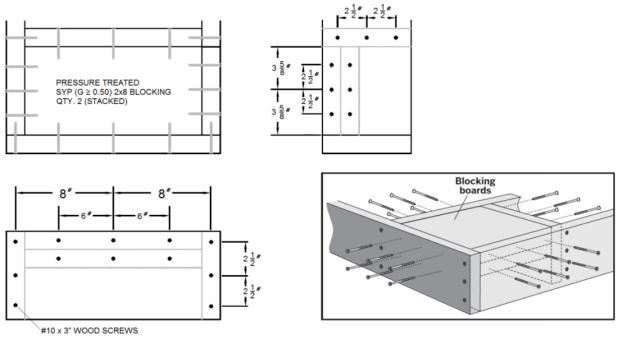
NOTES: 1. APPLICABLE STANDARDS AND SPECIFICATIONS ASME Y14.5 2009 DIMENSIONS AND TOLERANCE. 2. MATERIAL: MAKE FROM 930000105700 IRC POST EXTRUSION 3. BREAK ALL EDGES AND CORNERS 0.01 MAX.

- 43.000 -4.000 3.250 3.250 4.000 0 2.500 Ļ. 5X Ø0.406 0.500 -1/4" x 1/4" ± 1/16" FILLET WELD ALL 4 SIDES WITH Ø0.045" ER5356 WIRE (NOTE: POST AND BASEPLATE MUST BE CLEANED PRIOR TO WELDING.) A DETAIL



Allowable moment = 243 lbs \* 43 in = 10.45 k-in

#### 4.2 Anchorage check




Section removed



#### 4.2.2 Through-bolts with backer

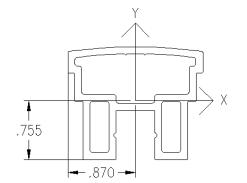
Reference Code Compliance Research Report CCRR-0202 for connection details.



Wood blocking detail

Figure 9 – Post Mount Installation on Wood Deck




#### 4.3 Top rail and bottom rail check

#### 4.3.1 Top rail

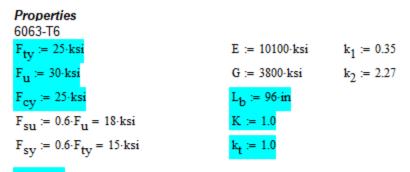
Loading on top rail due to live load:

(93.5" inside of post to inside of post)

$$M_x = \frac{PL}{4} = \frac{0.2 \ k * 93.5 \ in}{4} = 4.6 \ kip - in$$

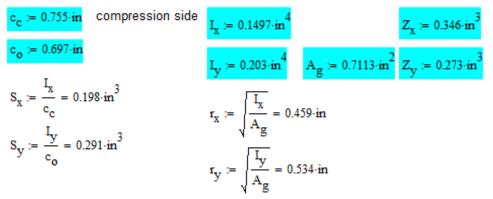


| Area: 0.7113<br>Perimeter: 15.2292                   |
|------------------------------------------------------|
| Bounding box: X: -0.8700 0.8700                      |
| Y: -0.7553 0.6967                                    |
| Centroid: X: 0.0000                                  |
| Y: 0.0000                                            |
| Moments of inertia: X: 0.1497                        |
| Y: 0.2030                                            |
| Product of inertia: XY: 0.0000                       |
| Radii of gyration: X: 0.4588                         |
| Y: 0.5342                                            |
| Principal moments and X-Y directions about centroid: |
| l: 0.1497 along [1.0000 0.0000]                      |
| J: 0.2030 along [0.0000 1.0000]                      |
| $Zy = 0.346 \text{ IN}^3$                            |
| $Zx = 0.273 \text{ IN}^3$                            |


\_\_\_\_

REGIONS




4.3.1.1 Vertical moment capacity

Custom extrusion design per ADM 2015



C<sub>b</sub> := 1.0 conservatively can be left as 1.0

Section properties



Resistance and safety Factors

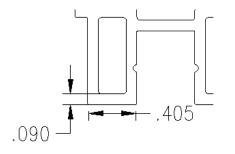
Ω := 1.65  $Ω_r := 1.95$ 



# Design of Members for Flexure Chapter F

## Check yielding and rupture - section F.2

# Yielding $Z_x \cdot F_{cy} = 8.65 \cdot kip \cdot in$ $1.5 \cdot S_x \cdot F_{cy} = 7.435 \cdot kip \cdot in$ $k_t = 1.0$ Dependent on type of Aluminum $M_{nux} := \begin{bmatrix} Z_x \cdot F_{cy} & if \ Z_x \cdot F_{cy} \leq 1.5 \cdot S_x \cdot F_{cy} & = 7.435 \cdot kip \cdot in \\ 1.5 \cdot S_x \cdot F_{cy} & if \ 1.5 \cdot S_x \cdot F_{cy} < Z_x \cdot F_{cy} & \end{bmatrix}$ $M_{1} := \frac{M_{nux}}{\Omega} = 4.506 \cdot kip \cdot in$ **YIELDING** $M_{1} := \frac{M_{nux}}{\Omega} = 4.506 \cdot kip \cdot in$ **YIELDING** $M_{nux} := \frac{Z_x \cdot F_u}{k_t} = 10.38 \cdot kip \cdot in$ $M_2 := \frac{M_{nux}}{\Omega_r} = 5.323 \cdot kip \cdot in$ **RUPTUREYielding** $Z_y \cdot F_{cy} = 6.825 \cdot kip \cdot in$ $1.5 \cdot S_y \cdot F_{cy} = 10.922 \cdot kip \cdot in$ $k_t := 1.0$ $M_{nuy} := \begin{bmatrix} Z_y \cdot F_{cy} & if \ Z_y \cdot F_{cy} \leq 1.5 \cdot S_y \cdot F_{cy} & = 6.825 \cdot kip \cdot in \end{bmatrix}$


$$1.5 \cdot S_y \cdot F_{cy} \text{ if } 1.5 \cdot S_y \cdot F_{cy} < Z_y \cdot F_{cy}$$
$$M_3 := \frac{M_{nuy}}{\Omega} = 4.136 \cdot \text{kip-in} \qquad \textbf{YIELDING}$$

#### Rupture

$$M_{nury} := \frac{Z_y \cdot F_u}{k_t} = 8.19 \cdot \text{kip} \cdot \text{in}$$
$$M_4 := \frac{M_{nury}}{\Omega_r} = 4.2 \cdot \text{kip} \cdot \text{in} \qquad \textbf{RUPTURE}$$



#### **Check Local Buckling - section F.3**



Flat Elements supported on one both edges in flexural compression (B5.5.2) Top member in compression

$$M_5 := \frac{F_b \cdot S_y}{\Omega} = 6.619 \cdot kip \cdot in$$
 WEAK AXIS LOCAL BUCKLING

Note: Lateral Torsional Buckling does NOT Control

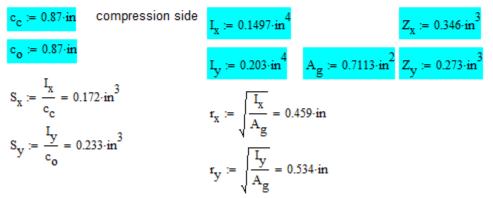
Strong Axis Bending Capacity  $M_{bx} := \min(M_1, M_2) = 4.506 \cdot kip \cdot in$ Weak Axis Bending Capacity  $M_{bv} := \min(M_3, M_4, M_5) = 4.136 \cdot kip \cdot in$ 

 $M_n = 4.5 k - in$ , 2% lower than applied moment from vertical 200 lb load. **<u>OK</u>**, minimum yield strength was used.



4.3.1.2 Horizontal moment capacity

Custom extrusion design per ADM 2015


| E := 10100-ksi          | $k_1 := 0.35$                                        |
|-------------------------|------------------------------------------------------|
| G := 3800·ksi           | k <sub>2</sub> := 2.27                               |
| L <sub>b</sub> := 96·in |                                                      |
| K := 1.0                |                                                      |
| k <sub>t</sub> := 1.0   |                                                      |
|                         | G := 3800·ksi<br>L <sub>b</sub> := 96·in<br>K := 1.0 |

С<sub>b</sub> := 1.0 conservatively can be left as 1.0

Section properties

\_

.

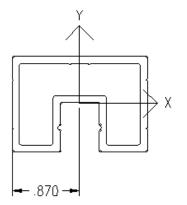


Resistance and safety Factors

Ω := 1.65  $Ω_r := 1.95$ 



# Design of Members for Flexure Chapter F


#### Check yielding and rupture - section F.2

# Yielding kt := 1.0 Dependent on type of Aluminum $Z_x \cdot F_{cv} = 8.65 \cdot \text{kip} \cdot \text{in}$ $1.5 \cdot S_x \cdot F_{cv} = 6.453 \cdot \text{kip} \cdot \text{in}$ $$\begin{split} \mathbf{M}_{nux} &\coloneqq & Z_x \cdot \mathbf{F}_{cy} \quad \text{if} \quad Z_x \cdot \mathbf{F}_{cy} \leq 1.5 \cdot \mathbf{S}_x \cdot \mathbf{F}_{cy} \\ & 1.5 \cdot \mathbf{S}_x \cdot \mathbf{F}_{cy} \quad \text{if} \quad 1.5 \cdot \mathbf{S}_x \cdot \mathbf{F}_{cy} < Z_x \cdot \mathbf{F}_{cy} \end{split}$$ $M_1 := \frac{M_{mux}}{\Omega} = 3.911 \cdot kip \cdot in$ YIELDING Rupture $M_{nurx} := \frac{Z_x \cdot F_u}{k_*} = 10.38 \cdot \text{kip} \cdot \text{in}$ $M_2 := \frac{M_{nurx}}{\Omega} = 5.323 \cdot kip \cdot in$ **RUPTURE** Yielding $Z_v \cdot F_{cv} = 6.825 \cdot \text{kip} \cdot \text{in}$ $1.5 \cdot S_v \cdot F_{cv} = 8.75 \cdot \text{kip} \cdot \text{in}$ k+ := 1.0 Dependent on type of Aluminum $$\begin{split} \mathbf{M}_{nuy} &\coloneqq & \left[ \begin{array}{ccc} Z_y \cdot \mathbf{F}_{cy} \ \ \text{if} \ \ Z_y \cdot \mathbf{F}_{cy} \leq 1.5 \cdot \mathbf{S}_y \cdot \mathbf{F}_{cy} &= 6.825 \cdot \text{kip} \cdot \text{in} \\ 1.5 \cdot \mathbf{S}_y \cdot \mathbf{F}_{cy} \ \ \text{if} \ \ 1.5 \cdot \mathbf{S}_y \cdot \mathbf{F}_{cy} < \mathbf{Z}_y \cdot \mathbf{F}_{cy} \\ \end{split} \right] \end{split}$$ $M_3 := \frac{M_{nuy}}{\Omega} = 4.136 \cdot kip \cdot in$ YIELDING Rupture $M_{nury} := \frac{Z_y \cdot F_u}{k} = 8.19 \cdot kip \cdot in$ $M_4 := \frac{M_{nury}}{\Omega} = 4.2 \cdot kip \cdot in$ **RUPTURE** Note: Lateral Torsional and Local Buckling do NOT Control Strong Axis Bending Capacity $M_{bx} := min(M_1, M_2) = 3.911 \cdot kip \cdot in$ Weak Axis Bending Capacity $M_{bv} := min(M_3, M_4) = 4.136 \cdot kip \cdot in$ $M_n = 4.1 k - in$ (controls for wind load)



#### 4.3.2 Bottom rail

# This rail is subject to a horizontal live load of 50 lbs applied at the center of an 8ft span over 1 square foot.





#### 4.3.2.1 Horizontal moment capacity Custom extrusion design per ADM 2015

| Properties<br>6063-T6                                                  |                         |                               |
|------------------------------------------------------------------------|-------------------------|-------------------------------|
| $F_{ty} := 25 \cdot ksi$                                               | E := 10100·ksi          | k <sub>1</sub> := 0.35        |
| $\mathbf{F}_{\mathbf{u}} := 30 \cdot \mathbf{ksi}$                     | G := 3800-ksi           | <b>k</b> <sub>2</sub> := 2.27 |
| $F_{cy} := 25 \cdot ksi$                                               | L <sub>b</sub> := 96 in |                               |
| $F_{su} := 0.6 \cdot F_u = 18 \cdot ksi$                               | K := 1.0                |                               |
| $\mathbf{F}_{sy} := 0.6 \cdot \mathbf{F}_{ty} = 15 \cdot \mathbf{ksi}$ | k <sub>t</sub> := 1.0   |                               |
| C <sub>b</sub> := 1.0 conservatively can be left                       | as 1.0                  |                               |
| Section properties                                                     |                         |                               |
| c <sub>o</sub> := 0.87 in compression side                             |                         |                               |
| $L_{} = 0.2173 \cdot in^4 A_{} = 0.6139 \cdot in^2 Z_{}$               | $:= 0.325 \cdot in^3$   |                               |

$$S_y := \frac{I_y}{c_o} = 0.25 \cdot in^3$$
  $r_y := \sqrt{\frac{I_y}{A_g}} = 0.595 \cdot in$ 

Resistance and safety Factors

$$\Omega := 1.65$$
  $\Omega_r := 1.95$ 



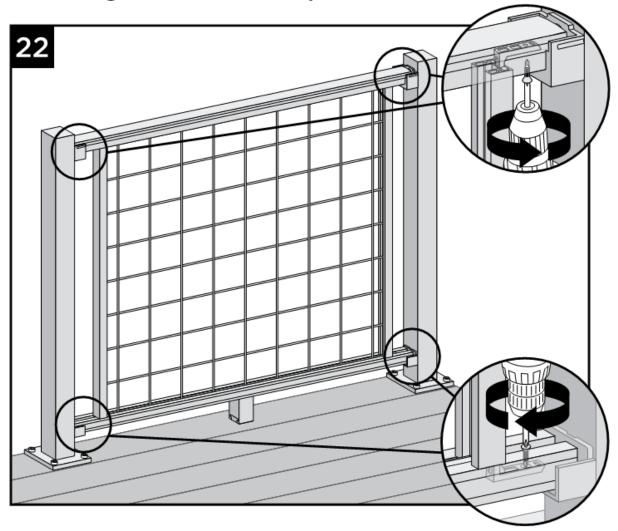
# Design of Members for Flexure Chapter F

## Check yielding and rupture - section F.2

### Yielding

$$\begin{split} & Z_{y} \cdot F_{cy} = \$.125 \cdot \text{kip} \cdot \text{in} \qquad 1.5 \cdot S_{y} \cdot F_{cy} = \$.366 \cdot \text{kip} \cdot \text{in} \qquad \textbf{k}_{t} := 1.0 \quad \text{Dependent on type of Aluminum} \\ & M_{nuy} := \left| \begin{array}{c} Z_{y} \cdot F_{cy} & \text{if} \quad Z_{y} \cdot F_{cy} \leq 1.5 \cdot S_{y} \cdot F_{cy} \\ 1.5 \cdot S_{y} \cdot F_{cy} & \text{if} \quad 1.5 \cdot S_{y} \cdot F_{cy} < Z_{y} \cdot F_{cy} \end{array} \right| \\ & M_{1} := \frac{M_{nuy}}{\Omega} = 4.924 \cdot \text{kip} \cdot \text{in} \qquad \textbf{YIELDING} \\ & \textbf{Rupture} \\ & M_{nury} := \frac{Z_{y} \cdot F_{u}}{k_{t}} = \$.75 \cdot \text{kip} \cdot \text{in} \\ & M_{2} := \frac{M_{nury}}{\Omega_{-}} = 5 \cdot \text{kip} \cdot \text{in} \qquad \textbf{RUPTURE} \end{split}$$

Note: Lateral Torsional and Local Buckling do NOT Control


Weak Axis Bending Capacity

 $M_{by} := min(M_1, M_2) = 4.924 \cdot kip \cdot in$ 

 $M_n = 4.9 \ k - in$ 



# 4.3.3 1 L-bracket Attaching L-Brackets to Top and Bottom Rails



This connection and bracket are adequate by inspection since the load applied is a fraction of the 50 lbs over 1 sq ft infill load.



#### 4.3.4 Test results

Similar brackets were tested. The connection of the brackets to the post are the same while the castings have little variance geometrically.

Results are reported from Architectural Testing report number C7526.01-119-19 revision 1 dated 2/20/14 and Intertek report E3233.01-119-19 revision 1 dated 3/24/15. The former test report was for the Trex Reveal system, which utilizes the same post, top rail and bottom rail including attachment brackets as does the rod rail system. The tests for the posts are not applicable since the alloy used in testing is a higher strength alloy than is used in production. The alloy used for the top rail in testing (6005-T5) is also different than that used in production but is the same strength. The latter Intertek test was used with the composite sleeves and spacer blocks, and thus indicates that they are also code compliant.



Photo No. 2



#### 4.3.4.1 Attachment brackets

| Test No. 5 - Test Date: 05/06/13<br>Design Load: 200 lb Concentrated Load at Both Ends of Top Rail (Brackets) |                   |                   |                                                                                                   |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Load Level <sup>1</sup>                                                                                       | Test Load<br>(lb) | E.T.<br>(min:sec) | Result                                                                                            |  |  |  |  |  |  |
| 1000 lb<br>(2.50 x D.L.) x 2                                                                                  | 1000 -<br>1011    | 01:05 - 02:07     | Each end withstood load equal to or<br>greater than 500 lb for one full minute without<br>failure |  |  |  |  |  |  |

<sup>1</sup> Load was imposed on both ends of rail using a spreader beam; therefore, loads were doubled.

The brackets averaged ~1000 lbs for all samples  $\rightarrow$  brackets are adequate.



# 5 Conclusion

| Component      | Conclusion |
|----------------|------------|
| Top rail       | Adequate   |
| Rail Caps      | Adequate   |
| Bottom rail    | Adequate   |
| Rail mounting  | Adequate   |
| brackets       | Auequale   |
| Posts          | Adequate*  |
| Baseplates and | Adequate   |
| base welds     | Auequale   |
| Mesh           | Adequate   |
| Anchorage      | Adequate   |

\*Controlling component

 $\rightarrow$  Railing meet the requirements of IRC 2015 with up to 6' post spacing. The capacity is limited by the strength of the post.



## 6 Appendix A – aluminum tensile test results

#### 6.1 Description

Tests were completed by Element Materials Technology in St. Paul, MN. Tests were conducted in accordance with ASTM B557-14 and ASTM E8-E8M-13a. 1/8" T4 and T6 material was tested. The following conditions were tested:

| Description                          | Tag   | Number |
|--------------------------------------|-------|--------|
| T4 samples                           | T4    | 3      |
| Heat treat T4 to T6                  | T4H   | 10     |
| Welded T4                            | T4W   | 10     |
| Welded T4 heat<br>treat to T6        | T4WH  | 10     |
| T6 samples                           | Т6    | 3      |
| Heat treat T6                        | T6H   | 10     |
| Welded T6                            | T6W   | 10     |
| Welded T6 heat<br>treat to T6        | T6WH  | 10     |
| Weld deposit on<br>T6 base metal     | T6WB  | 5      |
| Weld deposit on<br>T6 base metal, HT | T6WBH | 5      |
| Weld deposit on<br>T4 base metal     | T4WB  | 5      |
| Weld deposit on<br>T4 base metal, HT | T4WBH | 5      |

Notes:

\*Filler metal 5356 used on all welded samples

\*TIG process used with CJP butt weld for all 'W' and 'WH' samples

\*TIG process used with 1/8" fillet on both sides of sample for all 'WB' and 'WBH' samples

\*Samples with tag 'H' heat treated at 350°F for 8 hours and 8 minutes (see certification)

\*All samples were created from cold processes (shear/punch)

| COMME                                               |                              | 7008 Northla<br>Suite 150<br>Minneapolis,<br>(800) 337-533<br>Fax: (763) 533 | MN 55428<br>89   (763) 533-2094      |             |                   |
|-----------------------------------------------------|------------------------------|------------------------------------------------------------------------------|--------------------------------------|-------------|-------------------|
| 1                                                   |                              | Flame Metals                                                                 | Processing Corp.                     | Order N     | o.: 531050        |
|                                                     | · •                          |                                                                              | fication                             |             | te: 10/03/2014    |
| _/                                                  |                              | · · · · · · ·                                                                | • ·                                  |             | te: 10/02/2014    |
| To:                                                 |                              |                                                                              |                                      | Fay         | <b>je:</b> 1 of 1 |
| 7008 NORTH                                          | NCEPTS ACQU                  | JISITION,                                                                    |                                      | 05774       |                   |
| SUITE 150                                           |                              |                                                                              | Purchase Order No<br>Packing List No |             |                   |
| BROOKLYN F                                          | PARK MN 55                   | 5428                                                                         | 1 Materia                            |             |                   |
| We are pleased                                      | to provide you with          | the following Certificati                                                    |                                      |             | -1                |
| Quantity                                            | Part Number /                | Part Name / Part Desc                                                        | cription                             |             | Pounds            |
| 10                                                  | T4H                          |                                                                              |                                      |             |                   |
|                                                     | 6061-T4<br>Precipitation ha  | rden to condition T6                                                         |                                      |             |                   |
| 10                                                  | T4WH                         |                                                                              |                                      |             |                   |
|                                                     | 6061-T4<br>Provinitation has | rdon to condition TC                                                         |                                      |             |                   |
| 10                                                  | T6H                          | rden to condition T6                                                         |                                      |             |                   |
|                                                     | 6061-T6                      |                                                                              |                                      |             |                   |
| . 10                                                | Run to process<br>T6WH       | for Precipitation harder                                                     | ning T4 to condition T6              |             |                   |
| 10                                                  | 6061-T6                      |                                                                              |                                      |             | 3.04              |
|                                                     | Run to process               | for Precipitation harder                                                     | aing T4 to condition T6              |             |                   |
| Insp. Type                                          | Scale Minimum                | n Maximum Numb                                                               | er Other                             | I           | nspection ID#     |
| Customer Requ                                       |                              |                                                                              |                                      |             |                   |
| Hardnss                                             | HRB 42                       |                                                                              | •                                    |             |                   |
| Results:                                            |                              |                                                                              |                                      |             |                   |
| Parts were proce                                    | ssed according to t          | he procedure and indu                                                        | stry standards                       | ······      |                   |
|                                                     |                              |                                                                              | ony orandardo.                       |             |                   |
| Processed ok.<br>Final hardness Hi                  | RB:                          |                                                                              |                                      | · · · · · · |                   |
| T4 WH: 44.2                                         |                              |                                                                              |                                      |             |                   |
| T4 H: 46.5<br>T6 H: 45.6                            |                              |                                                                              |                                      |             |                   |
| T6 WH: 46.5                                         |                              |                                                                              |                                      |             |                   |
| Parts were tempe<br>Processing chart<br>Ok to ship. |                              | hours and 8 minutes.                                                         |                                      |             |                   |
| Madison Aguirre                                     |                              |                                                                              |                                      |             |                   |
|                                                     |                              |                                                                              |                                      |             |                   |
|                                                     |                              | -                                                                            |                                      |             |                   |
|                                                     |                              |                                                                              |                                      |             |                   |
|                                                     | 1                            |                                                                              |                                      |             |                   |

Some nA an

INSPECTOR



#### 6.2 Results

Derivation of yield (0.2% offset) and ultimate strength based on the samples values were calculated based on EN 1990-2002, Appendix D, Table D1. This method

#### D7.2 Assessment via the characteristic value

(1) The design value of a property X should be found by using :

$$X_{d} = \eta_{d} \frac{X_{k(n)}}{\gamma_{m}} = \frac{\eta_{d}}{\gamma_{m}} m_{X} \{ l - k_{n} V_{X} \}$$
(D.1)

#### Table D1 : Values of $k_n$ for the 5% characteristic value

| n                    | 1    | 2    | 3    | 4    | 5    | 6    | 8    | 10   | 20   | 30   | œ    |
|----------------------|------|------|------|------|------|------|------|------|------|------|------|
| V <sub>X</sub> known | 2,31 | 2,01 | 1,89 | 1,83 | 1,80 | 1,77 | 1,74 | 1,72 | 1,68 | 1,67 | 1,64 |
| Vx                   | -    | -    | 3,37 | 2,63 | 2,33 | 2,18 | 2,00 | 1,92 | 1,76 | 1,73 | 1,64 |
| unknown              |      |      |      |      |      |      |      |      |      |      |      |

Where,

m<sub>x</sub> = mean (average) value

 $k_n$  = characteristic fractile value given in Table D1 and based on the number of test samples

 $V_x$  = coefficient of variation

 $\eta_d$  = conversion factor, if required (=1 in this case)

 $\gamma_m$  = partial resistance (safety factor); factor depends on application. In this case, safety factors will be included in design per ADM requirements, thus factor in this statistical analysis = 1

The coefficient of variation was calculated as 0.02 and was based on mill certification data from various runs of aluminum as received. See Figure 1.



PRODUCTS

7008 Northland Drive Suite 150 Minneapolis, MN 55428 (800) 337-5339 | (763) 533-2094 Fax: (763) 533-2096

| 6061-T6 | mill cer | tification | data |          |         |           |      |
|---------|----------|------------|------|----------|---------|-----------|------|
| yield   | average  | std. dev.  | COV  | ultimate | average | std. dev. | COV  |
| 43.5    |          |            |      | 49       |         |           |      |
| 44.2    |          |            |      | 48.2     |         |           |      |
| 43.4    |          |            |      | 48.1     |         |           |      |
| 43.8    |          |            |      | 47.7     |         |           |      |
| 43      |          |            |      | 48.5     |         |           |      |
| 43.1    |          |            |      | 48.2     |         |           |      |
| 42.2    |          |            |      | 47.9     |         |           |      |
| 42.4    |          |            |      | 48.1     |         |           |      |
| 42.4    |          |            |      | 48       |         |           |      |
| 42.3    | 42.86    | 0.92       | 0.02 | 47.9     | 48.19   | 0.85      | 0.02 |
| 42.3    |          |            |      | 47.9     |         |           |      |
| 42.3    |          |            |      | 47.9     |         |           |      |
| 43.6    |          |            |      | 49.2     |         |           |      |
| 43.7    |          |            |      | 49.1     |         |           |      |
| 43.5    |          |            |      | 49       |         |           |      |
| 43.4    |          |            |      | 49.1     |         |           |      |
| 43.5    |          |            |      | 49.2     |         |           |      |
| 40.9    |          |            |      | 46.3     |         |           |      |
| 40.9    |          |            |      | 46.3     |         |           |      |

Figure 1 - Vx (COV) calculation



The values for yield strength and ultimate strength are calculated per equation D.1 shown previously.

| Material/tag | Sample no. | Yield | Average | Std. Dev. | kn 5% | Yield strength | Ultimate  | Average | Std. Dev. | kn 5% | Ultimate strength |
|--------------|------------|-------|---------|-----------|-------|----------------|-----------|---------|-----------|-------|-------------------|
|              | 1          | 29.7  |         |           |       | _              | 42.5      |         |           |       |                   |
| T4           | 2          | 29.9  | 29.80   | 0.10      | 1.89  | 28.6           | 42.8      | 42.53   | 0.25      | 1.89  | 41.1              |
|              | 3          | 29.8  | 1       |           |       |                | 42.3      |         |           |       |                   |
|              | 1          | 43.1  |         |           |       |                | 46.3      |         |           |       |                   |
|              | 2          | 43    | 1       |           |       |                | 46.8      |         |           |       |                   |
|              | 3          | 43.1  | 1       |           |       |                | 46.7      |         |           |       |                   |
|              | 4          | 43.1  | 1       |           |       |                | 46.6      |         |           |       |                   |
| T4H          | 5          | 43.5  | 42.98   | 0.25      | 1 70  | 41.4           | 46.7      | 46.47   | 0.28      | 1.72  | 45.1              |
| 140          | 6          | 43    | 42.98   | 0.25      | 1.72  | 41.4           | 46.8      | 40.47   | 0.28      | 1.72  | 45.1              |
|              | 7          | 42.8  | ]       |           |       |                | 46.1      |         |           |       |                   |
|              | 8          | 42.7  | ]       |           |       |                | 46.2      |         |           |       |                   |
|              | 9          | 42.9  | 1       |           |       |                | 46.3      |         |           |       |                   |
|              | 10         | 42.6  | 1       |           |       |                | 46.2      |         |           |       |                   |
|              | 1          | 22.5  |         |           |       |                | 31.6      |         |           |       |                   |
|              |            |       | 1       |           |       |                | NA -      |         |           |       |                   |
|              | 2          | 19.1  |         |           |       |                | weld fail |         |           |       |                   |
|              | 3          | 21.5  | 1       |           |       |                | 30.3      |         |           |       |                   |
|              | 4          | 28.1  | 1       |           |       |                | 31        |         |           |       |                   |
| TAN          | 5          | 24.7  | 22.00   | 2.20      | 1 70  | 22.1           | 30.8      | 20.00   | 0.70      | 1 74  | 20.7              |
| T4W          | 6          | 22.6  | 22.98   | 2.39      | 1.72  | 22.1           | 30.1      | 30.66   | 0.72      | 1.74  | 29.7              |
|              |            |       | 1       |           |       |                | NA -      |         |           |       |                   |
|              | 7          | 21.3  |         |           |       |                | weld fail |         |           |       |                   |
|              | 8          | 22.4  | 1       |           |       |                | 30.7      |         |           |       |                   |
|              | 9          | 23.5  | 1       |           |       |                | 31.4      |         |           |       |                   |
|              | 10         | 24.1  | 1       |           |       |                | 29.4      |         |           |       |                   |
|              | 1          | 26.1  |         |           |       |                | 33.5      |         |           |       |                   |
| ľ            | 2          | 26.5  | 1       |           |       |                | 33.7      |         |           |       |                   |
| ľ            | 3          | 26.2  | 1       |           |       |                | 34.2      |         |           |       |                   |
|              | 4          | 28.9  | 1       |           |       |                | 34.7      |         |           |       |                   |
|              | 5          | 26.2  | 1       |           |       |                | 34        |         |           |       |                   |
| T4WH         | 6          | 26.6  | 26.61   | 0.92      | 1.72  | 25.6           | 34.5      | 33.98   | 0.44      | 1.73  | 32.9              |
| -            | 7          | 26    | 1       |           |       |                | 33.6      |         |           |       |                   |
|              | 8          | 27.2  | 1       |           |       |                | 34.1      |         |           |       |                   |
|              | 9          | 26.8  | 1       |           |       |                | 33.5      |         |           |       |                   |
| ľ            |            |       | 1       |           |       |                | NA -      |         |           |       |                   |
|              | 10         | 25.6  |         |           |       |                | weld fail |         |           |       |                   |
|              | 1          | 26.7  |         |           |       |                | 33.2      |         |           |       |                   |
| ľ            | 2          | 27.9  | 1       |           |       |                | 33.5      |         |           |       |                   |
| T4WB         | 3          | 27.5  | 27.40   | 0.58      | 1.8   | 26.3           | 33.3      | 33.50   | 0.41      | 1.8   | 32.2              |
|              | 4          | 28    | 1       |           |       |                | 33.3      |         |           |       |                   |
|              | 5          | 26.9  | 1       |           |       |                | 34.2      |         |           |       |                   |
|              | 1          | 33.4  |         |           |       |                | 38.8      |         |           |       |                   |
|              | 2          | 26.6  | 1       |           |       |                | 38.2      |         |           |       |                   |
| T4WBH        | 3          | 32    | 31.66   | 2.96      | 1.8   | 30.4           | 39.1      | 38.84   | 0.45      | 1.8   | 37.3              |
|              | 4          | 34.1  | 1       |           |       |                | 39.4      |         |           |       |                   |
| ł            | 5          | 32.2  | 1       |           |       |                | 38.7      |         |           |       |                   |

All values in ksi



COMMERCIAL

PRODUCTS

#### 7008 Northland Drive Suite 150 Minneapolis, MN 55428 (800) 337-5339 | (763) 533-2094 Fax: (763) 533-2096

|      | 1                                                                        | 40.8                                                                                                                     | r              |      |      |      | 47.8                                                                                                                                                         |                |      |      |              |
|------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|------|--------------|
| T6   | 2                                                                        | 41.4                                                                                                                     | 41.10          | 0.30 | 1.89 | 39.4 | 48.1                                                                                                                                                         | 47.97          | 0.15 | 1.89 | 46.4         |
| 10   | 3                                                                        | 41.4                                                                                                                     | 41.10          | 0.50 | 1.05 | 55.4 | 48                                                                                                                                                           | 47.57          | 0.15 | 1.05 | 40.4         |
|      | 1                                                                        | 41.1                                                                                                                     | -              |      |      |      | 40                                                                                                                                                           |                | -    |      |              |
|      | 2                                                                        |                                                                                                                          |                |      |      |      |                                                                                                                                                              |                |      |      |              |
|      |                                                                          | 42.7                                                                                                                     |                |      |      |      | 47.1                                                                                                                                                         |                |      |      |              |
|      | 3                                                                        | 42.4                                                                                                                     |                |      |      |      | 46.7                                                                                                                                                         |                |      |      |              |
|      | 4                                                                        | 42.4                                                                                                                     |                |      |      |      | 46.7                                                                                                                                                         |                |      |      |              |
| T6H  | 5                                                                        | 42.3                                                                                                                     | 42.28          | 0.28 | 1.72 | 40.7 | 46.6                                                                                                                                                         | 46.66          | 0.18 | 1.72 | 45.3         |
|      | 6                                                                        | 42.3                                                                                                                     |                |      |      |      | 46.7                                                                                                                                                         |                |      |      |              |
|      | 7                                                                        | 42.3                                                                                                                     |                |      |      |      | 46.6                                                                                                                                                         |                |      |      |              |
|      | 8                                                                        | 42.6                                                                                                                     |                |      |      |      | 46.7                                                                                                                                                         |                |      |      |              |
|      | 9                                                                        | 42.1                                                                                                                     |                |      |      |      | 46.5                                                                                                                                                         |                |      |      |              |
|      | 10                                                                       | 41.9                                                                                                                     |                |      |      |      | 46.5                                                                                                                                                         |                |      |      |              |
|      | 1                                                                        | 21.4                                                                                                                     | [              | [    |      |      | 29.6                                                                                                                                                         |                | [    |      |              |
|      | 2                                                                        | 22.2                                                                                                                     |                |      |      |      | 31.4                                                                                                                                                         |                |      |      |              |
|      | 3                                                                        | 22.2                                                                                                                     |                |      |      |      | 30.3                                                                                                                                                         |                |      |      |              |
|      | 4                                                                        | 23                                                                                                                       |                |      |      |      | 29                                                                                                                                                           |                |      |      |              |
| T6W  | 5                                                                        | 25                                                                                                                       | 22.48          | 1.06 | 1.72 | 21.6 | 30                                                                                                                                                           | 30.02          | 0.83 | 1.72 | 29.1         |
| 1000 | 6                                                                        | 22.6                                                                                                                     | 22.40          | 1.00 | 1.72 | 21.0 | 30.6                                                                                                                                                         | 50.02          | 0.05 | 1.72 | 23.1         |
|      | 7                                                                        | 22.5                                                                                                                     |                |      |      |      | 29.4                                                                                                                                                         |                |      |      |              |
|      | 8                                                                        | 21.3                                                                                                                     | 1              |      |      |      | 29.4                                                                                                                                                         |                |      |      |              |
|      | 9                                                                        | 21.7                                                                                                                     | 1              |      |      |      | 29.3                                                                                                                                                         |                |      |      |              |
|      | 10                                                                       | 22.9                                                                                                                     |                |      |      |      | 31.2                                                                                                                                                         |                |      |      |              |
|      |                                                                          |                                                                                                                          |                |      |      |      | NA -                                                                                                                                                         |                |      |      |              |
|      | 1                                                                        | 27.7                                                                                                                     |                |      |      |      | weld fail                                                                                                                                                    |                |      |      |              |
|      | 2                                                                        | 27.2                                                                                                                     |                |      |      |      |                                                                                                                                                              |                |      |      |              |
|      |                                                                          |                                                                                                                          |                |      | 1    |      | 33.6                                                                                                                                                         |                |      |      |              |
|      |                                                                          |                                                                                                                          |                |      |      |      | 33.6<br>NA -                                                                                                                                                 |                |      |      |              |
|      | 3                                                                        |                                                                                                                          |                |      |      |      | NA -                                                                                                                                                         |                |      |      |              |
|      | 3                                                                        | 28.7                                                                                                                     |                |      |      |      | NA -<br>weld fail                                                                                                                                            |                |      |      |              |
| T6WH | 4                                                                        | 28.7<br>27.7                                                                                                             | 27.86          | 1.27 | 1.72 | 26.8 | NA -                                                                                                                                                         | 34.29          | 0.35 | 1.76 | 33.2         |
| T6WH | 4<br>5                                                                   | 28.7<br>27.7<br>27.3                                                                                                     | 27.86          | 1.27 | 1.72 | 26.8 | NA -<br>weld fail<br>34.2<br>34.6                                                                                                                            | 34.29          | 0.35 | 1.76 | 33.2         |
| T6WH | 4<br>5<br>6                                                              | 28.7<br>27.7<br>27.3<br>27                                                                                               | 27.86          | 1.27 | 1.72 | 26.8 | NA -<br>weld fail<br>34.2<br>34.6<br>34.1                                                                                                                    | 34.29          | 0.35 | 1.76 | 33.2         |
| T6WH | 4<br>5<br>6<br>7                                                         | 28.7<br>27.7<br>27.3<br>27<br>30.3                                                                                       | 27.86          | 1.27 | 1.72 | 26.8 | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5                                                                                                            | 34.29          | 0.35 | 1.76 | 33.2         |
| T6WH | 4<br>5<br>6<br>7<br>8                                                    | 28.7<br>27.7<br>27.3<br>27<br>30.3<br>29.4                                                                               | 27.86          | 1.27 | 1.72 | 26.8 | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5<br>34.5<br>34.5                                                                                            | 34.29          | 0.35 | 1.76 | 33.2         |
| T6WH | 4<br>5<br>6<br>7                                                         | 28.7<br>27.7<br>27.3<br>27<br>30.3                                                                                       | 27.86          | 1.27 | 1.72 | 26.8 | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5<br>34.5<br>34.5<br>34.5                                                                                    | 34.29          | 0.35 | 1.76 | 33.2         |
| T6WH | 4<br>5<br>6<br>7<br>8<br>9                                               | 28.7<br>27.7<br>27.3<br>27<br>30.3<br>29.4<br>27.4                                                                       | 27.86          | 1.27 | 1.72 | 26.8 | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5<br>34.5<br>34.5<br>34.5<br>NA -                                                                            | 34.29          | 0.35 | 1.76 | 33.2         |
| T6WH | 4<br>5<br>6<br>7<br>8<br>9<br>10                                         | 28.7<br>27.7<br>27.3<br>27<br>30.3<br>29.4<br>27.4<br>25.9                                                               | 27.86          | 1.27 | 1.72 | 26.8 | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5<br>34.5<br>34.5<br>34.5<br>NA -<br>weld fail                                                               | 34.29          | 0.35 | 1.76 | 33.2         |
| T6WH | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>1                                    | 28.7<br>27.7<br>27.3<br>27<br>30.3<br>29.4<br>27.4<br>25.9<br>25.1                                                       | 27.86          | 1.27 | 1.72 | 26.8 | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5<br>34.5<br>34.5<br>NA -<br>weld fail<br>31                                                                 | 34.29          | 0.35 | 1.76 | 33.2         |
|      | 4<br>5<br>7<br>8<br>9<br>10<br>1<br>2                                    | 28.7<br>27.7<br>27.3<br>27<br>30.3<br>29.4<br>27.4<br>25.9<br>25.1<br>24.6                                               |                |      |      |      | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5<br>34.5<br>34.5<br>NA -<br>weld fail<br>31<br>30.6                                                         |                |      |      |              |
| тб₩Н | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>1<br>1<br>2<br>3                     | 28.7<br>27.7<br>27.3<br>27<br>30.3<br>29.4<br>27.4<br>25.9<br>25.1<br>24.6<br>22.9                                       | 27.86<br>24.40 | 0.91 | 1.72 | 26.8 | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5<br>34.5<br>34.5<br>NA -<br>weld fail<br>31<br>30.6<br>29.6                                                 | 34.29<br>30.62 | 0.35 | 1.76 | 33.2<br>29.4 |
|      | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>1<br>2<br>3<br>4                     | 28.7<br>27.7<br>27.3<br>27<br>30.3<br>29.4<br>27.4<br>25.9<br>25.1<br>24.6<br>22.9<br>24.3                               |                |      |      |      | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5<br>34.5<br>34.5<br>NA -<br>weld fail<br>31<br>30.6<br>29.6<br>30.8                                         |                |      |      |              |
|      | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>1<br>2<br>3<br>4<br>5                | 28.7<br>27.7<br>27.3<br>27<br>30.3<br>29.4<br>27.4<br>25.9<br>25.1<br>24.6<br>22.9<br>24.3<br>25.1                       |                |      |      |      | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5<br>34.5<br>34.5<br>NA -<br>weld fail<br>31<br>30.6<br>29.6<br>30.8<br>31.1                                 |                |      |      |              |
|      | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>1<br>2<br>3<br>4<br>5<br>1           | 28.7<br>27.7<br>27.3<br>27<br>30.3<br>29.4<br>27.4<br>25.9<br>25.1<br>24.6<br>22.9<br>24.3<br>25.1<br>29.5               |                |      |      |      | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5<br>34.5<br>34.5<br>NA -<br>weld fail<br>30.6<br>29.6<br>30.8<br>31.1<br>36.1                               |                |      |      |              |
| T6WB | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>1<br>2<br>3<br>4<br>5<br>1<br>2      | 28.7<br>27.7<br>27.3<br>27<br>30.3<br>29.4<br>27.4<br>25.9<br>25.1<br>24.6<br>22.9<br>24.3<br>25.1<br>29.5<br>29.3       | 24.40          | 0.91 | 1.8  | 23.5 | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5<br>34.5<br>34.5<br>NA -<br>weld fail<br>30.6<br>29.6<br>30.8<br>31.1<br>36.1<br>35.9                       | 30.62          | 0.60 | 1.8  | 29.4         |
|      | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>1<br>2<br>3<br>4<br>5<br>1<br>2<br>3 | 28.7<br>27.7<br>27.3<br>27<br>30.3<br>29.4<br>27.4<br>25.9<br>25.1<br>24.6<br>22.9<br>24.3<br>25.1<br>29.5<br>29.3<br>29 |                |      |      |      | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5<br>34.5<br>34.5<br>34.5<br>NA -<br>weld fail<br>31<br>30.6<br>29.6<br>30.8<br>31.1<br>36.1<br>35.9<br>36.2 |                |      |      |              |
| T6WB | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>1<br>2<br>3<br>4<br>5<br>1<br>2      | 28.7<br>27.7<br>27.3<br>27<br>30.3<br>29.4<br>27.4<br>25.9<br>25.1<br>24.6<br>22.9<br>24.3<br>25.1<br>29.5<br>29.3       | 24.40          | 0.91 | 1.8  | 23.5 | NA -<br>weld fail<br>34.2<br>34.6<br>34.1<br>34.5<br>34.5<br>34.5<br>NA -<br>weld fail<br>30.6<br>29.6<br>30.8<br>31.1<br>36.1<br>35.9                       | 30.62          | 0.60 | 1.8  | 29.4         |



#### 6.3 Derived properties

The following figure summarizes the values calculated in section 8.2.

All values in ksi

| Properties             |          |      |
|------------------------|----------|------|
| T4                     | yield    | 28.6 |
|                        | ultimate | 41.1 |
| T4 - welded            | yield    | 22.1 |
|                        | ultimate | 29.7 |
| T4 heat treated        | yield    | 41.4 |
|                        | ultimate | 45.1 |
| T4 heat treated/welded | yield    | 25.6 |
|                        | ultimate | 32.9 |
| T4 heat affected       | yield    | 26.3 |
|                        | ultimate | 32.2 |
| T4 heat affected/HT    | yield    | 30.4 |
|                        | ultimate | 37.3 |
| T6                     | yield    | 39.4 |
|                        | ultimate | 46.4 |
| T6 - welded            | yield    | 21.6 |
|                        | ultimate | 29.1 |
| T6 heat treated        | yield    | 40.7 |
|                        | ultimate | 45.3 |
| T6 heat treated/welded |          |      |
|                        | yield    | 26.8 |
|                        | ultimate | 33.2 |
| T6 heat affected       | yield    | 23.5 |
|                        | ultimate | 29.4 |
| T6 heat affected/HT    | yield    | 28.3 |
|                        | ultimate | 34.8 |



#### 6.4 Conclusions and applicability of data

The following conclusions can be made from the data:

- 1) Heat treating T4 material (unwelded) brings it to T6 strength
- 2) T4 and T6 welded material has essentially the same strength properties
- T4 welded material is reduced to ~78% of its as received yield, T6 welded material is reduced to ~56% of its as received yield
- 4) Heat treating welded material recovers 15-24% of the strength
- 5) Heat affected and heat treated material (i.e., fillet weld is not through material) has ~30% more strength than welded material
- 6) Heat treatment does not have a negative effect on base material outside of the heat-affected zone or on filler material

The data indicates that for welded areas on T4 and T6 material that are heat treated, the minimum yield used for design purposes is 25.6 ksi. Conservatively, this value is used rather than 30.4 ksi for heat affected and heat treated areas. This is an added measure of safety to account for the fillet weld (or heat affected zone) penetrating through the material, which may be the case for larger fillet welds.